

Coherent Beam Combining of 21 Semiconductor Gain Elements in a Common Cavity*

SSDLTR 2012

12-SSDLTR-029

Wenqian Huang (Ronny), Juan Montoya, Steven Augst, Kevin Creedon, Jan Kansky, T.Y. Fan, Antonio Sanchez-Rubio MIT Lincoln Laboratory

> June 12, 2012 INCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

*This work is sponsored by High Energy Laser Joint Technology Office under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the United States Government.

- Array of gain elements inside a common optical cavity an old concept for scaling with diffraction limited beam quality
- Scalability in earlier proof-of principle demos was hampered by the need to maintain phase across the array

- Number of elements (3 6)
- Combining efficiency (70% 80%)
- Power ~10 mW per element

J. R. Leger, G. J. Swanson, W. Veldkamp, "Coherent laser addition using binary phase gratings," Appl. Opt. **26**, 4391 **(1987)**

In this work: Active control of the phase allows for scaling to 21 elements with excellent beam quality.

Master Oscillator Power Amplifier (MOPA) Configuration

 MOPA configuration requires multiple amplification stages with isolators and mode matching optics, but has been a successful platform for coherent beam combining.

S. Redmond et al, *Active Coherent beam combining of diode lasers*, Optics Letters, Vol. 36, No. 6, 2011

MITLL has demonstrated coherent beam combining (CBC) of 218 semiconductor amplifier elements.

A power-oscillator is simpler and more compact than a MOPA implementation

- Efficient CBC in passive cavities (no phase control of individual elements) does not scale well above ~ 8 elements
 - Arbitrary arm lengths cause random phase relationships

Scaling to higher number of elements can be achieved using active phasing

Active phase-control allows for scaling beyond passive limits

Stochastic Parallel Gradient Descent (SPGD) Phase-Control Algorithm

Diode Arrays with Individually Addressable Elements

Array on cooler

- Stackable high density arrays were developed to demonstrate coherent combination of semiconductor amplifiers:
 - 21 individually addressable gain elements
 - 200-µm spacing
 - Precise position tolerances
 - Back facet HR-coated and front facet AR-coated
- Each array is collimated with a spherical microlens array to increase the fill factor

21 Diode Array Combining Efficiency Measurement and Diagnostics

- Cavity output ports allow for efficiency measurement ($\eta = P_0/P_T$)
- Spatial filter (slit) prevents feedback from higher DOE orders
- Intracavity diagnostics include:
 - Near-Field Spectrometer, Far-Field Camera, Power monitors

Cavity designed with diagnostics for proof-of-principle

SPGD Control Loop Phase-Locks 21-Element Array

Far-field images

 Random-phase combining efficiency is ~ 5%, consistent with incoherent beam combining of 21 beams

Active phase-control enables scaling to large number of elements

Near-Field Spectrometer Results

Active Phase Control

<u>Random Phase</u>

Near field spectrometer illustrates that all elements operate at the same wavelength when SPGD is activated

SPGD adjusts optical path lengths (phase) of each emitter to coherently combine the beams

Combined Power/ Efficiency

21-Element Combined Output Power $P_0 = 2.5 W$, $M^2=1.11$

Efficiency Estimates

Loss Mechanism	Efficiency Penalty (%)	Cumulative Max Efficiency (%)
DOE splitting efficiency	10	90
Pointing Error	3	87
SPGD Dither	1	86
Aberrations	1	85
Amplitude Variations	4	81

Achieved record combining efficiencies of 81% for 21 semiconductor elements. Cavity not optimized to produce high power.

SPGD Convergence and Long-Term Stability

- Experimentally observed convergence time ~ 4 ms
- Once CBC is established and phases are held fixed at optimum values, the active phase control may be turned off and efficiency is self-sustaining

- Power oscillators are more compact than MOPA lasers
- Diode and bulk solid-state lasers are well-suited to power oscillator configurations
 - We have successfully demonstrated 21 diode element CBC in a power oscillator with an 81% combining efficiency

Acknowledgements:

- George Turner, Leo Missaggia for diode arrays
- Shawn Redmond for SPGD discussions
- SCOWL array and DOE development funded by DARPA MTO