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On a scale from O to 1, what is the risk of this to your health?
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Applied to Risk
Scoring in the Wild
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Choice-to-Score

1.0
. simulation
I (1, ify; = maxy’ | — theory
Choice J€5: Compute 1 0.5 - /
set  cwl)={-1 ify=miny Mean &)= D clul) -
; k —
encoding . Choice =
0, otherwise
— N —

[ ” s—1 ~ s—1
e <C(yz—))=( ) dy') —( / f(y')dy’)

—

Yi
I_ —1.04

averaged choice

1.0 =05 0.0 05 1.0

true risk



Choice Set Diversifier
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Application to Inherent Risk Scoring

Background: Understanding Know Your Customer (KYC) Risk is essential for the financial services industry.

Problem: Modeling KYC risk is difficult because of lack of data and poor data quality.

Our Solution ‘

Label synthetic examples needed to build a model that
mimics human expert evaluation.

— train

— test
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Out of Sample Performance ‘

0.0
Population Group Profiles = SMA Escalations Escalation Rate 0.0 N 0-'5. 1.0
IRM Selected Alerted Profiles 1,500 28 1.87 alse positive rate
Remaining Scenario Alerted Profiles 2,500 3 0.12 Metric Train  Test

AUC 97% 93%
Classification Error 8% 11%




Takeaways

Choice to Score relation converts relative information to absolute information about risk

Choice Set Diversifier makes our training set data-efficient

Results Good performance on real-world data by a model trained with choice-based labels

Thank youl! Accurate, Data-Efficient Learning from
https://arxiv.org/abs/1811.10791 Please visit our poster: Noisy, Cho:ce-B.ased Lapels for Inherent
Risk Scoring
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