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DeepErase - Deep Learning for Artifacts Removal

Background

Paper-intensive industries like insurance and law have long leveraged optical character recognition (OCR) to transcribe scanned documents into text strings for downstream processing. Text extracted from
real world documents is often nested with tabular structures of underlines, boxes or even strikes of ink from neighbor form cells. Such ink artifacts can severely interfere with the performance of recognition
algorithms or other downstream processing tasks.
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Model Framework -4

£

We devised a synthetic training data generation method and trained a deeplearning-based segmentation model to remove the artifacts in form crops. The practice enhances the OCR performance. The
segmentation accuracies for both frameworks were above 96% based on 280,000 labeled images. The cleaning decreased tesseract recognition character error rate from 97.26% to 59.95% based on NIST
sd02 Tax Form dataset crops. The model paper has been adopted in NeurlPS 2019*.
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Synthetic Training Data Generation & Usage

In order to automatically obtain a corpus of dirty images, we created a program to impose realistic-looking artifacts on the readily available datasets of clean images. We focus on four types of artifacts:
machine-printed underlines
Machine-printed fill-in-the-blank boxes
Random smudges
Handwritten spurious strokes
Below is a example of a base image and an artifact used in the assembly process.

Base Image: Artifact Patched Training Data Generation

Artifact Line: SR %~
Patched Image: o5 ;I_I

Predicted Mask: __-.-.4

05

Artifact Removal Pipeline
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Apply to OCR

A typical OCR process at least includes two major modules: Text Detection + Text Recognition. Between the two modules, text segmentation and quality enhancement process may be applied. Below is a
demonstration of inhouse OCR design. The model is inserted as a preprocessing layer between 2 and 3.

2 Text Detection Text Recognition

1 Input Image Prepocess (EAST) 3 (DenseNet CNN + LSTM + CTC) 4 Paragraph Recovery

Document Page Scan Image Model Topology Paragraph Construction
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Snapshot of Model Performance

Performance:

Able to identify line/box artifacts with high accuracy
Unet 96.7% of over all pixel level accuracy
Unet 96.6% of non-artifact pixel capture rate

vV v v Y

Unet 98.5% of artficat pixel capture rate

» Based on a public out of distribution IRS extraction datasets, the
model reduces tesseract recognition character error rate from
97.26% to 59.95%

Model Performance:

valid/acc,valid/cap_0,valid/cap_1
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valid/acc —— valid/cap_0 —— valid/cap_1

Sample Predicted Output:
[OK] <= [ERR:6] : "1627"->" .. L621" -> "1627"

q 1627 1627

0 50 100 15'0 260

250

i [OK] <= [ERR:5] : "$503" -> "_$ -> "$503"
$503 $5@3
0 50 100 150 200 250
. [OK] <= [ERR:4] - "3769" -> * " -> "3769"
ol 3769 3769

0 50 100 150

* [after cleaning] <=[before cleaning]: “ground truth”’->"before cleaning”

->"after cleaning”

Fast Convergence of Loss with Training Iteration:

train/loss valid/loss
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Additional Development and Assessment

Additional Development Work:
» Joint Training: DeepErase + Recognition

Benchmarking:
» Houghline Method*
» Manual Supervision Method**

Extensive Recognition Testing:
» Printed Validation Dataset

» Handwritten Validation Dataset
» Printed IRS Crop Images (NIST sd02)
» Handwritten Crop Images (NIST sd06)

"L Likforman-Sulem, A. Hanimyan, and C. Faure. A hough based algorithm for extracting text lines in handwritten documents. In Proceedings of 3rd International Conference on Document Analysis and Recognition, volume 2, pages 774—
777. IEEE, 1995. 2

** J. Calvo-Zaragoza, G. Vigliensoni, and I. Fujinaga. One-step detection of background, staff lines, and symbols in medieval music manuscripts with convolutional neural networks. In ISMIR, pages 724-730, 2017.
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