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Abstract

Paper-heavy industries like insurance, law, and gov-
ernment have long leveraged optical character recognition
(OCR) to automatically transcribe hordes of scanned doc-
uments into text strings for downstream processing. Text
to be extracted from real world documents is often nestled
inside rich formatting, such as tabular structures or forms
with fill-in-the-blank boxes or underlines whose ink often
touches or even strikes through the ink of the text itself. Fur-
ther, the text region could have random ink smudges or spu-
rious strokes. Such ink artifacts can severely interfere with
the performance of recognition algorithms or other down-
stream processing tasks. In this work, we proprose Deep-
Erase, a neural-based pre-processor to erase ink artifacts
from text images. We devise a method to programmatically
generate artificial text images with realistic-looking arti-
facts, and use them to train the U-net-like model in a totally

unsupervised manner. In additional to high segmentation
accuracy, we show that our cleansed images achieve a sig-
nificant boost in recognition accuracy by popular OCR soft-
ware such as Tesseract. Finally, we test DeepErase in-the-
wild on scanned IRS tax return forms and achieve double-
digit improvements in accuracy on printed text. All experi-
ments are performed on both printed and handwritten text.

1. Introduction

Despite the digitization of information over the past
twenty years, large swaths of industry still rely on paper
documents for data entry and ingestion. Optical character
recognition (OCR) has thus become a widely adopted tool
for automatically transcribing text images to text strings.
Modern convolutional neural networks have driven many
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Figure 1: DeepErase cleans, or erases, ink artifacts from document text images, improving recognition accuracy, visual ap-
peal, and other downstream tasks. Here we show text images cropped from scanned documents with various ink artifacts,
such as underlines, boxes, smudges, and spurious strokes. DeepErase removes those artifacts, immediately improving recog-
nition performance by Tesseract, a widely used open-source OCR tool, for printed text and by SimpleHTR, a popular offline

handwriting classifer, for handwritten text.



major advances in the performance of OCR systems, cul-
minating in the large-scale adoption of OCR tools such as
Tesseract, Abbyy, or Microsoft OCR.

OCR, or more generally document text recognition, re-
lies on a two-step process: (1) Localization: determine re-
gions of the image (i.e. bounding boxes) which contain
text and crop out those regions. (2) Recognition: transcribe
cropped text image into a text string. Localization was tra-
ditionally performed via sliding window-based techniques
and nowadays is performed via region proposal networks
[30]. Meanwhile, convolutional feature extractors [17] cou-
pled with recurrent classifiers with the CTC loss has long
been the workhorse of text recognition algorithms [1 1, 12],
although more recent approaches use attention-based net-
works [5, 24].

The relevant text to be extracted from real world doc-
uments are often nestled inside of rich formatting such as
tabular structures or forms with fill-in-the-blank boxes or
underlines. Furthermore, documents with handwriting en-
tries often contain handwritten strokes which do not stay
within confines of the boxes or lines in which they be-
long and can encroach into regions occupied by other text
that needs to be transcribed (henceforth such encroachment
strokes will be called spurious strokes). When extracting
text regions from such richly formatted documents, it is in-
evitable that such document ink artifacts are present in the
cropped image even if the localization is perfect. Such ar-
tifacts can severely degrade the performance of recognition
algorithms, as shown in Figure 1.

Despite the prevalence of these artifacts in the real world,
many document text recognition datasets, including IAM
[21], NIST SDB19 [14], and IFN/ENIT [9] contain only
images which are cleanly cropped and are more or less free
from artifacts. Even the recently released FUNSD dataset
of noisy scanned documents [13] segment their words free
of underlines, boxes, and spurious strokes. Consequently,
most results on text recognition have reported their perfor-
mance on clean test examples [12, 4], typically in the form
of well-aligned, well-spaced text lines, which are not repre-
sentative of the noisy, marked-up, richly formatted scanned
documents encountered in the wild.

One possible way to robustify a text recognition system
is to train it on images containing the types of artifacts typ-
ically present in documents, making it robust against such
perturbations, a method akin to data augmentation or ad-
versarial training [10]. However, today most organizations
are already set up with industrial-grade recognition systems
wrapped in cloud and security infrastructure, rendering the
prospect of overhauling the existing system with a home-
made classifier (which is likely trained on much fewer data
and therefore less performant) too risky an endeavor for
most.

Nonetheless, many industrial-grade classifiers are still

not robust to document images with ink artifacts (Figure
1. An alternative way to address this problem is to erase
artifacts from the image before feeding it into the recog-
nition engine. One might want artifact-cleansed images
for other downstream tasks as well besides recognition, in-
cluding signature extraction/verification [20] and document
restoration, or simply for visual appeal; thus it is important
to have an image pre-processing step that erases these arti-
facts.

Little work has been done leveraging deep learning for
document artifact removal. In this work, we present Deep-
Erase, which inputs a document text image with ink artifacts
and outputs the same image with artifacts erased (Figure 1).
Training is totally unsupervised as we use a simple artifact
generator program to produce dirty images along with their
segmentation masks for training. Note that henceforth we
may refer to images with artifacts as “dirty”. We evaluate
the performance of DeepErase by passing the cleansed im-
ages into two popular text recognition tools: Tesseract and
SimpleHTR. On Tesseract, DeepErase achieves a 40-60%
word accuracy improvement (over the dirty images) on our
validation set and a 14% improvement on the NIST SDB2
dataset of scanned IRS documents.

1.1. Related work

Our work is related broadly to the field of semantic seg-
mentation [19, 28, 2], which predicts classes for different
regions of the image. While semantic segmentation is typi-
cally applied to natural scenes, several works have applied it
to documents for page segmentation [7], structure segmen-
tation [3 1], or text line segmentation [27]. All of these tasks
discriminate large-scale structure within a document, such
as tables or text lines, rather than small-scale patterns such
as underlines striking through text characters.

Classical methods for line artifact detection used the
Hough transform to detect lines and other simple shapes in
documents, such as ellipses [18, 22]. Such methods, how-
ever, do not pay attention to the spatial structure beyond
specified shapes, and may erase parts of the clean text that
overlapped with the artifact. Since the dawn of deep learn-
ing, similar tasks involving semantic segmentation in doc-
uments have been actively researched. Document binariza-
tion is a task in which each pixel in an RGB or grayscale im-
age is assigned a binary value of either on or off. Binariza-
tion in low-contrast, degraded documents cannot rely solely
on neighborhood-independent pixel thresholds and, like our
task, must pay attention to the spatial patterns in the image.
Recent approaches in binarization leverage multiscale con-
volutional networks to perform per-pixel binarization pre-
diction [29].

The works of Calvo-Zaragoza et al. [6] and Kolsch et
al. [16] are the most similar works to ours. The task in [6]
is to discriminate between staff-lines and musical symbols
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in musical scores, while the task in [16] is to identify hand-
written annotations inside of historical documents. Both ap-
proaches leverage fully convolutional architectures for their
respective semantic segmentation tasks. There are several
differences which make our task more challenging. In [6],
the staff-lines and musical symbols, which the task wishes
to distinguish, comprise a limited set of variations. Staff-
lines appear in the same position with respect to the musi-
cal notes and tend to be long continuous horizontal lines. In
contrast, our artifacts include lines, smudges, and spurious
strokes in a variety of orientations and positions relative to
the text. The historical document text characters in [16] are
printed while the annotations are handwritten, and the an-
notations have a slightly different shade, both of which are
telltale signs for the network to discriminate. Our images on
the other hand are binarized before entering the model, forc-
ing our segmenter to rely solely on neighborhood spatial
structure. Finally, both these approaches require manually
labeled segmentation masks, while our approach is totally
unsupervised.

1.2. Contributions

Our contributions are threefold:

e Novel application: We tackle artifact removal in
printed and handwritten text images, a problem not yet
approached by deep learning.

e Unsupervised approach: Our approach is unsuper-
vised, requiring only a clean, unlabeled set of printed
or handwritten text images which is widely available.

e Empirical results: Our artifact-cleansed images
achieve low test error and consequently have convinc-
ing performance upon visual inspection. Further, our

artifact-cleansed images improve recognition accuracy
on well-known text recognition engines such as Tesser-
act.

2. Method
2.1. Summary of approach

Like other document binarization or segmentation tasks,
we use a fully convolutional network to map the raw input
image to a binary segmentation mask indicating artifact or
no-artifact for each pixel in the image. Once the mask is ob-
tained, all pixels on the mask indicating the presence of an
artifact are set to 255 (white) on the input image, effectively
cleansing it from artifacts. For training data, we automat-
ically generate a corpus of dirty images paired with their
segmentation masks, generated using method described be-
low in Section 2.3, for both printed and handwritten text.
The network is trained and validated on this data, and then
tested in-the-wild on the NIST dataset of scanned IRS tax
returns.

2.2. Datasets

In this work we train and test on both printed and hand-
written text. Since printed text is easy to generate, we gen-
erate 280k text images in various fonts of words pulled from
Wikipedia using TextRecognitionDataGenerator
[2]. For handwritten text, we use the IAM dataset [21] con-
sisting of about 110k handwritten words from 657 writers.
For testing, we use the NIST SDB2 [15] and NIST SDB6
[15] datasets consisting of about 6k pages (each) of IRS tax
return forms with printed and handwritten entries, respec-
tively, each containing the types of artifacts that we wish
to tackle in this work. We pre-crop text regions from the



IRS dataset using image registration (the IRS documents all
share the same template, making image registration espe-
cially effective) and manually defined crop regions for the
template. In total, we have 22165 printed text images and
35202 handwritten text images from the IRS forms for test-
ing. All images are binarized prior to being input into the
model.

2.3. Programmatic generation of text images with
artifacts

In order to automatically generate a corpus of dirty im-
ages, we create a program which imposes realistic-looking
artifacts on the readily available datasets of clean images.
Similar ways of programmatically generating labeled data
has been done for natural language processing tasks [26].
We focus on four types of artifacts: machine-printed un-
derlines, machine-printed fill-in-the-blank boxes, random
smudges, and handwritten spurious strokes.

For random smudges and spurious strokes, we take a
sampling of the IAM handwriting dataset to act as the ar-
tifacts. For line and box artifacts, we extract 5000 crops of
horizontal and vertical lines and blank boxes from various
sources of scanned forms, including the NIST IRS dataset
as well as some internally scanned forms. The datasets
contain many examples of forms from the same template
(e.g. the 1040 tax form). To automate extraction of lines or
boxes, we first apply conventional homography-based im-
age registration to the entire dataset, and then iteratively
crop the same region from each image.

We then binarize both the clean and artifact images. This
ensures that our network cannot rely on subtle differences
in shading to predict artifacts.

Next we sample an offset by which to translate the arti-
fact image with respect to the clean image. This offset is
sampled from a uniform distribution with bounds set such
that the artifact falls within regions of the text that are con-
sistent with the real-world. For instance, spurious strokes

Algorithm 1 Generation of text images with artifacts

1: Input clean image x € [0,255]"*™, artifact sample
Xqrt € [0, 255]°%P, offset

2: Begin

3:  Binarize x and x,,; with threshold of 128

4:  Translate x,,; by offset, expanding image if needed
and filling additional pixels with intensity 255

5:  Crop X4+ to the same size as x

6:  Superimpose X+ onto X to get the dirty image,
1.e. Xgirty < Min (X, Xgp¢)

7. Create segmentation mask,
i.e. s Xgrt + (255 — max (X, Xgrt) )

8: Return dirty image X4;,,, segmentation mask s

usually occur at the top or bottom of the image, while un-
derlines usually occur at the bottom. We leave the bound-
aries of the distribution loose enough such that there is sig-
nificant randomness and the artifacts overlap with the text
characters a significant portion of the time.

After translating the artifact image by the offset amount,
we then superimpose it onto the clean images by taking the
lower intensity pixel (O intensity corresponds to black) of
the two (artifact and clean) images for each pixel in the
clean image. Examples of the resulting dirty images are
shown in Figure 4. The entire artifact text image generation
algorithm is presented in Algorithm 1.

Finally, the segmentation mask should contain all the
markings of the artifact image minus the markings of the
clean image. In other words, suppose that A was the set of
pixels containing the artifact marks, and B is the set of pix-
els containing the clean marks. Then the segmentation mask
(or pixels containing an artifact) wouldbe S = A — AN B.
We show our implementation in Algorithm 1.
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Figure 3: Our U-net architecture used for artifact segmen-
tation.

2.4. Model architecture and training

The network, schematic in Figure 3 is a simple U-net
architecture [2] which predicts a segmentation mask of ar-
tifact or no-artifact for each pixel. Convolutions are per-
formed in blocks of two layers. At the end of each block,
the feature map is downsampled via maxpooling, and the
number of channels is doubled. After two blocks, the fea-
ture maps are upsampled via deconvolution (or transposed
convolution) for two blocks until the feature map resolution
is same as the original image. The first feature map in each



Table 1: Segmentation results on validation set

Segmentation error

Baseline Cleaned
Hough on printed 50 17.62
DeepErase on printed 50 3.38
Hough on handwritten 50 15.31
DeepErase on handwritten 50 4.36

upsampling block is concatenated with the last feature map
from the corresponding downsampling block, as is done in
U-net.

The training objective is simply to minimize the cross
entropy loss between the true segmentation mask and the
predicted segmentation mask on a per pixel basis, with av-
eraging in the end. To address the class imbalance issue
(there are a lot more pixels labeled not-artifact than as arti-
fact) we use the median frequency balancing scheme from
[8]. No regularizers are used in the training objective. The
RMSProp optimizer is used to minimize the objective.

To encourage translation and size invariances, we ap-
ply data augmentation in the form of resizing, followed by
horizontal and vertical shifts of the image within the fixed
32128 canvas.

3. Evaluation
3.1. Baseline artifact detector

As a baseline artifact detector, we use the Hough trans-
form line detector, a method ubiquitous over the past several
decades to detect and remove underlines and other simple
shapes from images. We utilize the standard OpenCV 3.0
Hough Line [23] implementation. In our validation set re-
sults (Table 2) we evaluate the Hough transform and Deep-
Erase on a split of the datasets containing only line artifacts
in order to ensure a fair comparison. Since the error for
DeepErase on the line artifacts-only split was always lower
than its error for the entire dataset, we report only the error
on the entire dataset for DeepErase.

3.2. Evaluation metrics

Other than visual inspection, we use two metrics to de-
termine our performance on artifact removal. First, we use

the segmentation error on the validation set, which is the
probability that a pixel on the predicted segmentation mask
does not match the ground truth. To compare our results,
we include the baseline of a random segmentation, which
has an error of 50% since the segmentation output is binary.

The secondary metric that we use for evaluating perfor-
mance is recognition error. The simple assumption is that
images cleaned from artifacts will make it easier for recog-
nition models to discriminate. Two recognition error met-
rics are reported. Character error rate (CER) is the string
edit distance between the predicted string and the ground
truth string, or in other words, the minimum number of per-
character add, delete, or replace operations needed to match
the two strings. Word error rate (WER) is the probability
that the predicted word does not match the ground truth,
regardless of how far off it is.

For printed text recognition we use the widely used open-
source Tesseract v4 software. Since there is no widely avail-
able offline handwriting recognition software, we used the
model from the SimpleHTR repo [1]. Both softwares are
based on an LSTM-CTC architecture.

3.3. Validation results

We first test our model on a held-out set of examples
from our dirty datasets. Since we used a train/validation
split of 9:1, the held-out set consists of 28k examples for
printed and about 11k for handwritten. Since our dirty
dataset was crafted from a base dataset (raw images from
TextRecognitionDataGenerator or IAM), we re-
port the performance of the base images on the recognition
models as a baseline from which to compare our results on
the cleaned images.

Using DeepErase, we observe segmentation error of less
than 5% on printed and handwritten text, which means that
most pixels are correctly erased (see Table 1). In contrast,
the Hough transform-based line removal achieves signifi-
cantly higher error, since it removes entire lines including
the parts which overlap with the text.

Good segmentation leads to greatly improved recogni-
tion performance as well as shown in Table 2. When
the artifacts are erased before inputting into Tesseract
or SimpleHTR, the recognition accuracy improves by
60.56% and 31.20%, respectively. DeepErase also beats
Hough line removal by similar margins. The segmenta-

Table 2: Recognition results on validation set

Base Dirty Cleaned
Setting CER WER | CER WER | CER WER
Hough on printed 13.23  20.89 | 129.53 95.05 | 132.83 93.67
DeepErase on printed 13.23 20.89 | 10498 93.89 | 2149 33.33
Hough on handwritten 6.89 20.22 | 50.51 7834 | 5232 81.71
DeepErase on handwritten | 6.89  20.22 | 48.97 78.40 | 28.58 47.20
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Figure 4: Examples from validation results. Columns 1 and 3 are before cleansing, 2 and 4 are after cleansing.

tion is not perfect though—when compared with the “gold
standard” base images, cleansed images get about 15-30%

higher recognition error. Figure 4 shows some example im-
ages before and after artifact erasing.
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Figure 5: Examples from IRS results. Columns 1 and 3 are before cleansing, 2 and 4 are after cleansing.

3.4. Results on real-world NIST IRS dataset

In addition to evaluating on the validation set, we wish
to test DeepErase in the wild on text from scanned IRS tax
return forms. In-the-wild data tends to experience distribu-
tion shift [25], leading to lower performance when tested on
models trained on data from other distributions. Typically
this results in an iterative process where the training data is
better adapted to the distribution in-the-wild, and the sys-
tem is re-tested. We present results from our first-pass here,
where we had not seen the IRS data before designing our
artifact generation algorithm 1.

On the IRS printed data, removing artifacts via Deep-

Erase lowers the Tesseract recognition error by 14.67% as
shown in Table 3. On the handwritten data, however, it ac-
tually increases word error by about 10%, although it de-
creases character error by about 4%. This could be due to
a couple reasons. First, the research-codebase handwrit-
ing recognition model we use (SimpleHTR) was trained
on limited data and performs unpredictably on slight im-
age perturbations. One example is that “33” image on
Figure 5 is classified as a “33” before cleansing and as
“333” after cleansing. Such anomalies suggest that the re-
sult could have to do in part with an unstable recognition
model which gets individual characters wrong for having
very slight flaws. The fact that the character error decreases



Table 3: Recognition results on NIST IRS datasets

Base/Dirty Cleaned
Setting CER WER | CER WER
Hough on printed 97.26 78.87 | 194.13 94.98
DeepErase on printed 97.26 78.87 | 60.87 64.20
Hough on handwritten 20.31 38.67 | 19.04 50
DeepErase on handwritten | 20.31 38.67 | 16.88 48.01

seems to support this. Second, the SimpleHTR model
could have already been trained to be robust to underlines
(the main source of artifact in the IRS dataset); therefore our
erasing attempts provide no improvement to the recognition
accuracy and occasionally remove a legitimate region of the
image by accident (see “WOLF” in Figure 5 as an example
of this).

In addition, Figure 5 shows examples of artifact removal
in both printed and handwritten IRS text. Despite the higher
recognition error garnered by DeepErase on the handwritten
data, upon visual inspection the erased images look reason-
ably good and may yield better results on other downstream
tasks, or on recognition with a different model.

4. Conclusion

In short, we have presented DeepErase, a neural-based
approach to removing artifacts from document text images.
This task is challenging because it must rely solely on spa-
tial structure (rather than differences in shading since the
images are binarized) to do semantic segmentation of a wide
variety of artifacts. We present a method to programmati-
cally generate unlimited realistic-looking text artifact im-
ages and use them to train DeepErase in an unsupervised
manner. The results on the validation set are excellent,
showing good segmentation along with a 40 to 60% boost in
recognition accuracy for both printed and handwritten text
using common recognition software. On the real-world IRS
dataset, DeepErase improves recognition accuracy by about
14% on printed text. Despite having inconclusive recog-
nition results on handwritten text, the cleansed images on
handwritten IRS text look reasonable. Next steps would be
to better model the test distribution during the artifact gen-
eration process such that the trained model performs better
at test time.
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